Search: Home | Atlas | Guides | Tests | Research | Techs | Skills | Index | Recent Changes | Preferences | Login

Users > Nijlpaard

printf("Hello world!\n");

Hi. On this page I will publish my research on vines, its phenotypes and genes.

Thanks to Calixes, Shelyak and others.

Nijlpaard. Level 5.

This page will be updated within 3 days.

Examining Tending Tables to find Phenotypes

After carefully researching the The Big Book of Tendings, that contains tending tables for many vine types, I found that when you make a cross table showing all differences between tending tables of various vines you get a limited number of sets of differences (49 numbers, 7 states x 7 tends). One may call them phenotypes. For instance, the vines Distraction and Amusement only differ in the V column of their tending tables. Vine Wisdom differs only in the K column with some other vines. Using Excel it is possible to find all possible sets/phenotypes of all (?) vine types.

It is also possible to construct the tending table of the base vine, Wild Type as others call it.

In the table below you will find the phenotypes of various wines I ran through Excel. In -almost- every tending table, the A and C column are related. I have called that phenotype AC.

Explanation of table 1:

Vine Distraction only differs from Wild Type in the G column. The set is called G1. Vine Balance differs with Wild Type in AC, Q, K and S colums. Their sets are called AC1, Q1, K2 and S2. Amusement differs in G and V. The G set (49 numbers) of that vine type is the very same as the one of Distraction, thus also named G1.

So far I found there are 2 AC sets, 3 G sets, 4 Q sets, 3 K sets, 3 S sets, and 2 V sets. The sets within a particular column are mutually exclusive. A vine cannot have Q2 and Q3, just one of Q, and so on. I did not find a relation between various sets. Some sets only contain even numbers (AC2, Q3, K2 and others). I have no explanation for that. It is possible that all sets are made of atom sets, or quarks, I don't know.

Table 1.
Vine Type AC1 AC2 -- -- G1 G2 G2 -- -- Q1 Q2 Q3 Q4 -- -- K1 K2 K3 -- -- S1 S2 S3 -- -- V1 V2
Wild Type - - - - - - - - - - - - - - - - -
Distraction - - X - - - - - - - - - - - - - -
Appreciation - - - - - - X - - - - - - - - - -
Wisdom - - - - - - - - - X - - - - - - -
Frivolity - X - - - - - - - - - - - X - - -
Amusement - - X - - - - - - - - - - - - X -
Contemplation - - - - - - - X - - - X - - - - -
Balance X - - - - X - - - - X - X - - - -
Calixes #47/51/52 - - - - X - - - - - - - - - - - -
Calixes#23 X - - - - - - - - - - - X - - - -
MomMouse#12 X - - - - - - - - - - - - - X - -
Calixes#24/Eigam#62 - - X - - - - - - - - - X - - - -
GGSS - - X - - - - - - - - - - X - - -
Shelyak#3 - - - - - X - - - - - - - - X - -
MomMouse#18 - - - - - - X - - - - - X - - - -
Eigam Iron - - - - - - - - X - - - - - X - -
Calixes#27 X - - - - X - - - - - - X - - - -
Calyxus #22 X - - - - - - X - - - - X - - - -
GQSSS - - - X - X - - - - - - - - X - -
Calixes #37 - - - X - - X - - - X - - - - - -
Shelyak#4 - - - - - - - X - - X - X - - - -
Triple Mutation ? ? - - X - X - - X - - - - X ? ?
Phoenixwcu#7 X - - - - X - - - - X - - - X - -
Eigam Copper - - X - - X - - - - X - X - - - -
Eigam#71 - - - X - - - X - - X - X - - - -
Calixes#25 X - - - X - - - - - X - X - - -
Double Mutation - X X - - - - X - - - X - X - X -
Single Mutation X - - X - X - - - - X - X - - - X

Complete tending table for all vine types

All vine types have AC0, G0, Q0, K0, S0 and V0. Added to that are the sets for the various phenotypes.

The Wild Type, which has no extra phenotypes, thus has a tending table of

AC0 G0 Q0 K0 S0 V0
-1 4 4 3 -2 3 -14
etc. for the other 48 lines.

Amusement has G1 and V1 (Table 1). The tending table is: AC0, G0+G1, Q0, K0, S0, V0+V1.

AC0 G0+G1 Q0 K0 S0 V0+V1
-1 4 4+-6 3 -2 3 -14+12
etc.

or:

A C G Q K S V
-1 4 -2 3 -2 3 -2
etc.

Table 2.
Phenotypes: AC AC AC AC AC AC --- G G G G --- Q Q Q Q Q --- K K K K --- S S S S --- V V V
0A 0C 1A 1C 2A 2C 0 1 2 3 0 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2
Vine State Tend
Sagging AS -1 4 -5 -8 8 -8 4 -6 -9 -10 3 2 2 -12 8 -2 2 0 -4 3 5 -12 -15 -14 12 13
MG 2 -2 -5 7 8 -4 -1 4 5 3 -2 -2 3 -6 -8 -2 16 -2 -2 3 -9 6 -8 -3 -6 -10
PO 2 -3 -3 3 6 -2 -3 -6 -3 6 4 -10 -16 -12 -4 3 -14 0 8 3 0 4 11 -9 -2 0
SL -3 1 6 -7 4 6 -3 2 0 4 4 3 10 -12 12 -1 -11 1 -4 0 5 -4 12 -12 4 3
SV -3 -3 10 -1 2 10 -1 12 -1 2 3 2 -4 -8 8 3 12 2 4 3 -9 -10 7 -8 -4 5
TV -2 1 0 -7 8 8 4 0 -10 -14 -2 7 8 8 16 1 13 7 10 -2 -1 2 -9 -10 8 9
TL 3 -1 -9 9 -4 8 -2 6 5 -5 2 2 -2 10 -4 -3 5 10 0 -1 -5 -8 1 -8 2 -1
Wilting AS 1 4 -4 -4 8 4 2 0 -7 -3 -1 8 -2 -2 8 -3 -8 -2 -4 3 -1 -2 0 -14 8 12
MG 2 -2 -7 -3 -8 10 -1 -8 -3 17 -2 5 -10 -6 18 2 -3 -3 -2 -1 3 -8 0 -14 4 5
PO -2 -2 0 1 -6 14 -2 4 9 13 3 -1 7 6 -16 4 7 3 -2 -2 0 2 -4 -11 10 0
SL -2 -1 1 -4 -2 4 4 8 -8 7 -3 8 16 -4 20 3 -15 3 -2 1 1 -2 12 -5 -2 1
SV 0 2 -6 -5 6 0 -3 10 2 -1 4 0 10 -4 -12 4 8 2 -8 -3 -2 4 0 -6 -2 0
TV -1 3 -4 4 4 -6 -1 -2 -3 2 0 -5 -8 -8 -12 3 -9 -6 -2 4 0 -10 -10 -9 0 1
TL -2 -3 -2 8 8 12 0 2 -6 4 1 -7 -3 4 -16 1 11 2 0 -2 2 12 15 -10 6 -3
Musty AS 3 3 3 0 -12 -10 -3 4 -3 16 -1 2 -4 4 8 -1 -4 -4 -8 -2 7 2 11 -2 -6 1
MG 0 0 2 -6 -8 8 -2 0 8 -10 2 -8 -3 6 -8 3 12 -7 -2 1 -3 -10 12 -5 4 -4
PO 4 -2 1 7 2 4 1 -8 -4 -12 1 4 -6 2 4 1 10 0 0 -3 3 8 17 -11 10 10
SL -3 2 4 3 4 -6 -1 10 1 -2 -1 -1 14 2 -4 3 13 -3 -10 -1 8 2 3 -7 -4 -6
SV 1 1 3 6 0 -6 -1 6 -2 -4 3 -4 8 6 -16 4 -14 -2 4 0 7 0 9 -1 -6 -8
TV 1 3 6 -4 -4 -12 -1 8 2 -9 -1 7 15 8 4 2 9 0 8 -2 1 2 0 -13 4 5
TL -3 -1 6 -1 14 0 1 -8 -1 15 -1 1 -11 6 4 3 -5 -8 -12 2 1 0 -1 -5 2 -7
Fat AS 4 4 -4 -2 0 6 4 6 -6 1 1 7 -2 -4 -8 -3 15 2 -2 -2 -4 10 -7 -13 10 0
MG 1 -2 -5 2 6 8 1 -6 -3 6 0 8 7 0 8 -1 -10 -1 -8 3 1 -12 5 -11 10 8
PO 1 2 -2 6 0 -2 3 -8 1 8 0 5 15 -6 -4 1 12 3 0 1 3 0 1 -11 10 6
SL -2 -1 3 -3 2 10 1 4 3 4 -1 6 3 6 0 0 -5 8 -8 4 -3 8 2 -2 -6 0
SV 3 2 -7 -7 0 0 -2 10 9 15 2 -3 -2 0 0 0 11 0 -6 3 2 -6 3 -9 0 5
TV 4 3 -8 2 2 4 2 10 -8 14 -1 -2 -1 10 16 -3 -1 3 -4 -2 9 2 -1 -2 -2 -4
TL 3 4 4 4 -2 2 1 -10 -1 7 2 -6 0 2 12 3 6 -6 -4 0 6 -2 -9 -1 -10 -4
Rustle AS -1 -3 -5 2 -4 2 4 0 -2 11 -1 -4 14 -8 20 0 5 -6 -6 -3 3 -4 -4 -9 4 4
MG 4 1 -2 0 2 0 1 -6 7 11 3 -8 -1 2 16 0 -9 -2 4 4 2 -8 -12 -7 2 -1
PO 1 4 -1 -1 8 -6 3 -4 -4 -10 -2 2 -8 -4 20 4 2 -3 -4 3 -1 -8 0 -12 8 4
SL 3 0 -5 -2 2 4 3 -6 5 -5 -2 1 2 4 4 -3 -7 9 10 1 2 0 6 -6 4 3
SV 2 -1 6 -5 -6 10 1 10 2 12 -1 -5 -10 0 16 2 -12 4 6 -2 5 -4 8 -6 -6 -3
TV 0 0 -3 4 0 -4 3 4 3 -7 3 2 0 2 -16 2 -7 -5 4 3 -2 8 0 -13 2 5
TL 1 2 1 4 4 -6 -3 12 9 -7 3 -4 -8 -4 8 1 -2 1 -2 0 6 -8 3 -1 -4 -7
Shrivel AS -3 4 11 -8 6 4 4 0 -4 3 1 5 5 2 -4 2 11 4 10 1 0 -4 7 -2 -2 -7
MG -2 3 7 -9 8 8 3 0 -5 0 -3 4 3 2 16 -1 8 -1 12 4 -2 8 -1 -10 4 7
PO 4 3 0 -3 -12 2 4 2 -9 -10 -2 8 17 -2 20 -1 7 -4 0 0 8 -8 11 -2 0 -4
SL -3 1 10 -4 12 -4 3 2 4 -10 2 6 0 4 -12 3 -10 5 -4 1 3 0 0 -11 2 6
SV 2 4 3 -3 -4 6 0 -8 8 -4 -1 -1 3 8 8 3 9 0 8 2 -1 4 6 -2 -8 -9
TV -3 4 5 -9 8 8 0 4 5 0 4 -7 -5 8 -16 4 -5 -2 -8 -3 0 14 0 -4 -6 -1
TL -2 0 8 8 -2 10 -1 4 -4 4 2 -5 -9 4 4 2 -6 1 10 -3 7 -2 15 -10 0 -2
Shimmer AS -2 -2 -1 7 4 10 -1 12 -1 3 3 -9 -8 -8 -12 1 -9 4 -8 -2 -2 -6 -2 -13 10 2
MG 3 0 -5 -5 0 2 0 -4 -3 5 -2 7 -9 2 -8 1 14 -4 4 4 -4 8 0 -7 6 6
PO 3 0 0 7 2 12 3 -4 -2 7 4 4 -15 0 -8 -3 6 11 -2 1 0 -4 0 -5 4 3
SL -3 0 7 1 10 8 -3 -2 10 -7 4 -10 -13 -10 8 1 -1 -3 8 0 2 2 -2 -13 2 6
SV 0 0 5 -5 0 8 0 -2 -1 -12 0 -4 -2 0 -4 1 10 1 0 -1 -2 12 -2 -14 12 13
TV -3 -3 6 2 -2 2 1 -6 -4 -8 -1 -4 6 -8 -4 0 15 -5 0 3 -4 0 0 -6 -6 1
TL 1 4 -4 -10 -2 2 -1 -4 -1 10 -1 -2 -10 -4 16 -1 -9 -4 -2 1 3 6 0 -14 12 7

Determining phenotypes with only a few tends

Now because there is a limited number of sets it is relatively easy to determine the phenotypes of a unknown vine by just recording only a few random tends. You do not have to know what vine it is, just looking at the tending table (Table 2) will give the answer.

Suppose we plant a vine and the initial state is

A C G Q K S V
0 0 9 0 0 0 100 Fat

We randomly pick the SL tend, and the result is:

A C G Q K S V
0 0 10 0 0 4 98 (Musty)

We now know that the tending table for this vine, Fat SL is

A C G Q K S V
<=0 <=0 +1 <=0 +4 <=0 -2

Now check Table 2 under Fat->SL:

AC0=(-2,-1), AC1=AC0+(3,-3), AC2=AC0+(2,10).

AC0 matches with our tending table (<=0, <=0), the tending table with AC1 would be AC0+AC1=(1,-4), which does not match with (<=0, <=0). With AC2 the tending table would be (-2,-1)+(2,10)=(0,9). Again a mismatch.

AC0 is probably correct. We do not have an exact match though. (Remember any vine type always has at least the tending table AC0, G0, Q0, K0, S0, V0 + any extra sets, if any).

G0=1, G1=G0+4, G2=G0+3, G3=G0+4. G0 is the only exact match.

Q0=-1, Q1=-1+6, Q2=-1+3, Q3=-1+6, Q4=-1-0. Q0 and Q4 match. One more tend is necessary to determine Q.

K0=0, K1=-5, K2=8, K3=-8. K0, K1 and K3 match. One more tend necessary.

S0=4, S1=1, S2=12, S3=6. S0 matches exactly.

V0=-2, V1=-6, V2=-2. V0 and V2 match. One more tend needed.

After one tend we know that the phenotypes of our unknown vine are:

AC0, G0, Q0/Q4, K0/K1/K3, S0, V0/V2

Let's do the second tend. We have the Musty state and we select (randomly) to use MG.

Result:

A C G Q K S V
0 0 8 2 15 5 93 (Rustle)

so, for Mustle->MG the tending table would be:

A C G Q K S V
<=0 <=0 -2 +2 +15 +1 -5

checking Table 2 under Mustle->MG reveals that we must have:

AC0, G0, Q0, K1, S0, V0. K0 and K3 mismatch, and so does V2.

We apparently have a vine that only has the K1 phenotype. It matches with Wisdom in Table 1. Further tending will then show that the derived charactistics are indeed correct.

What if none of the sets match? Congratulations, you have found a new mutation :).


Home | Atlas | Guides | Tests | Research | Techs | Skills | Index | Recent Changes | Preferences | Login
You must log in to edit pages. | View other revisions
Last edited May 6, 2008 12:56 pm by Nijlpaard (diff)
Search: