La bière est le brevage national de l'Egypte. On la prépare dans des Chaudrons à bière à partir de diverses combinaisons de Malt et de Miel. On la verse ensuite dans des petits tonneaux que l'on sert sur une Table Ceremonielle De Degustation.
Les caractéristiques d'une bière proviennent des ingrédients et de la levure utilisés
La bière est stoquée dans des Petit tonneau. Un tonneau de bière est trés lourd, avec un poids de 100 et un encombrement de 1. Il n'y a aucun autre moyen de vider un tonneau rempli de bière, que de l'utiliser (soit en l'ouvrant à un bar, soit en le distillant, soit en préparant de l'ambroisie).
Péremption: Contrairement au vin, la bière périme, la rendant imbuvable (la bière entamme le processus de péremption une fois transférée dans un petit tonneau. Vous pouvez par contre la laisser indéfiniment dans le chaudron à bière). Plus une bière est Puissante (Potent), plus elle restera buvable longtemps. Une bière trés puissante (Very potent) sera bonne 1 semaine, une bière puissante (Potent) 1 jour et une bière pas puissante (Non potent) 1 heure. Même si une bière périmée ne peut être bue, elle peut toujours servir à la confection d'ambroisies, ou d'extraits.
La bière est préparée à base de malt et de miel, dans un Chaudron a biere. Vous devez posséder la technologie Brassage de biere (Ubody).
Lancer un chaudron nécessite 60 bois et 25 cruches d'eau. une fois lancé, le processus comprend deux étapes distinctes:
Le brassage dure 20 minutes (1200 secondes). A tout moment, vous pouvez ajouter du malt et/ou du miel. Le moment où vous ajouter ces ingrédient a une trés grande influence sur les effets.
A tout moment, vous pouvez sceller le chaudron, ce qui empeche les microbes d'y penetrer. Il se peut qu'une bière soit buvable sans jamais fermer le chaudron, mais la plupart du temps, il vous faudra sceller aprés l'entrée de la levure (Yeast) et avant que des mauvais microbes ne rentrent (Voir plus bas).
Une fois la fermentation accomplie, vous pouvez laisser la bière dans le chaudron indéfiniment. Vous pouvez également transférer la bière dans un Petit tonneau afin de l'utiliser. Cette action vous révèlera les caractéristiques de la bière en question. Si elle est imbuvable, elle sera autoimatiquement detruite, et il vous sera rendu un tonneau vide. Si elle est buvable, vous pourrez nommer le tonneau. Une fois que vous avez utiliser la bière, le petit tonneau vous est rendu.
Faire une bonne bière nécessite 3 étapes:
Cependant, presque rien ne semble avoir changé depuis T2, donc vous pouvez probablement utiliser vos anciennes levures.
Il existe une centaine de microbes, certains sont des levures (yeast), d'autres sont des lactobaciles, des Molds, ou des Acétobactéries. Il n'est pas garanti que toutes les levures donnent de la bière buvable, nous devons donc chercher des endroits appropriés pour chacune des levures. Les microbes autres que des levures rendent la bière imbuvable, il est donc indispensable d'isoler les levures avant de produire de la bière.
Votre objectif est de trouver un endroit où le premier microbe qui rentre est une levure, puis de trouver le bon moment pour fermer le chaudron, c'est à dire aprés l'entrée de la levure, mais avant l'entrée de tout autre microbe.
On isole une levure en lançant un Test de levure (Yeast Test). Cette option élimine l'etape de brassage, pour ne laisser que la fermentation, cela ne prend donc que 40 minutes. A la fin du test, vous prenez votre "bière" (si on peut apeller le produit du test une bière), et vous aurez les caractéristiques, dont la liste des microbes qui sont entré, dans l'odre d'entrée (du premier au dernier).
Carte des levures - reportez ici les microbes que vous avez identifier.
Faire de la bière ressemble beaucoup au Test de levure, avec une phase de brassage en plus, durant 1200 secondes, placée avant la période de fermentation. Pendant le brassage, il est possible d'ajouter du miel et/ou du malt. une fois le brassage terminé, la bière entre automatiquement en fermentation, et vous devrez fermer le couvercle au bon moment.
Vous devriez essayer:
N'espérez pas que votre bière soit buvable! Ces tests sont uniquement destinés à obtenir les valeurs qui vous permettront de faire de bonnes bières.
Tableaux de levures: [split format| Double format]? or [Simple format]? - Ces tableaux indiquent les valeurs pour les levures connues, ajoutez-y vos résultats!
Vous devriez également utiliser la [Feuille de calcul]? afin de prédire vos recettes sans gaspiller trop de ressources.
La phase de brassage dure 1200 secondes (20 minutes), à tout moment pendant cette période, vous pouvez ajouter des ingrédients (miel et malt) dans le chaudron. Ce que vous y ajouter, et en quelle quantité determinera certaines des caractéristiques de votre bière.
Notez que les saveurs de bannane, cerise, date, orange, cannelle, noix de muscade ainsi que le mauvais goût sont produit uniquement par la levure pendant la phase de brassage.
Ces valeurs doivent être vérifiées pour T3. Mes tests montrent pour le moment que le miel ajouté à la fin produit 4,75 vitamines et environ 16,7 saveurs de miel. - Ratio
Le tableau ci-dessous, copié du wiki T2 est faux. Feuille de calcul de T2 contient les valeurs correctes. - Archilochus
Voici mes données persos: Ingredient Testing. - Ratio
Valeurs de l'ajout au début du brassage:
Ingredients | Glucose | Maltose | Couleur | Vitamines | Orge | Tannin | Herbe | Miel | Vérifié par |
Malt cru | 1 | 5 | 1 | 10.58 | 12 | 6 | 12 | 0 | |
Malt légèrement cuit | 2 | 10 | 1.5 | 8.33 | 6 | 3 | 1.5 | 0 | |
Matt moyennement cuit | 2 | 10 | 3 | 5.58 | 6 | 2 | 0 | 0 | |
Malt trés cuit | 2 | 10 | 6 | 4.17 | 6 | 1.5 | 0 | 0 | |
Malt brûlé | 0 | 2 | 12 | 0 | 0 | 0 | 0 | 0 | |
Miel | 10 | 0 | 0 | 0.835 | 0 | 0 | 0 | 0.95 | Ratio |
Valeurs de l'ajout à la fin du brassage:
Ingredients | Glucose | Maltose | Couleur | Vitamines | Orge | Tannin | Herbe | Miel | Vérifié par |
Malt cru | 1 | 5 | .17 | 63.5 | 2 | 1 | 2 | 0 | |
Malt légèrement cuit | 2 | 10 | .25 | 50 | 1 | .5 | .25 | 0 | |
Matt moyennement cuit | 2 | 10 | .5 | 33.5 | 1 | .33 | 0 | 0 | |
Malt trés cuit | 2 | 10 | 1 | 25 | 1 | .25 | 0 | 0 | |
Malt brûlé | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | |
Miel | 10 | 0 | 0 | 4.75 | 0 | 0 | 0 | 16.665 | Ratio |
En cours de traduction - Kaayru
The equation for honey flavor appears to be parabolic. For example, with 120 honey, my experiments showed 2000 honey flavor when added at the end, 1333 honey flavor (roughly 65% end value) when added at 54 remaining , and 261 honey flavor (roughly 13% end value) when added when added at 487 remaining. Vitamins appear to be similar, but with a different curve, from the same honey I got 570 vitamins at the end, 499 (rougly 87% of end value) when added at 54 remaining, and 196 (roughly 34% of end value) when added at 487 remaining. Raw data is at Beer 3521 -319, note that in the values I mentioned I adjusted for honey flavor generated by yeast and vitamins generated by malt. -- Temander
The brew phase is divided into 100 "ticks", each 12 seconds long. The ingredient formulas are based on the nearest tick. In other words, you will get identical results from adding an ingredient with 1 second remaining as you will from adding with 5 remaining.
My experiments suggest that the first and last ticks are only half as long, since "nearest tick" is taken literally. The first tick is at 1200 and the second at 1188, so 1193 is already nearer the second tick. This makes it pretty hard to get predictable results from beers where everything goes in at the start. -- Amtep
Notice that when ingredients are added right at the start, honey flavor and vitamins will actually be slightly under their base values.
It is essential to have an appropriate amount of sugars, or once the yeast converts some of them to alcohol, you will get undrinkable beer. Glucose is sweeter than maltose, and converted to alcohol first by the yeast. Each yeast will have a maximum amount of alcohol and minimum amount of each sugar at which it stops working; a yeast may not be able to create beer at all, or may be able to create various strengths of beer. If a yeast makes a good flavor but not enough alcohol, it may still be useful in combination with a high-alcohol yeast. A yeast also needs vitamins, which it consumes as it converts sugar, and will stop working if it runs out; each yeast has its own minimum vitamin level.
Generally, a small amount of raw or light malt added at the end is a good way to ensure enough vitamins; a small amount of burnt malt added at the beginning is a good way to add color. To add barley flavor, add medium or dark malt at the beginning. To add honey flavor, add honey at the end. Adding raw malt or lots of light malt at the beginning will almost certainly result in undrinkable grassy beer, so don't!
Yeasts also produce various flavors, at various rates; honey and barley are the only flavors can be obtained with any yeast, since they can come from the ingredients, though honey can come from the yeast as well. Enough fruit and honey flavors will result in Fruity beer. Cinnamon and nutmeg flavors can produce Spicy beer, but too much of these flavors can make your beer bitter, so be very careful with your tannin levels when working with cinnamon or nutmeg yeasts. If a yeast produces lots of Nasty or Grassy flavors, it is unusable.
Only the two strongest flavors will be noticable in the beer, and only one if the second is too much weaker than the first, so be careful not to overwhelm any fruit or spice flavors with barley and honey flavor from ingredients. If you have three flavors which are all close in strength, you will get Muddled beer; this *is* drinkable, but will likely not be useful for anything but drinking when more uses become available.
Yeast converts sugar into alcohol on a 1:1 basis. Yeast always converts the glucose first, then the maltose. A yeast will always leave a minimum amount of glucose and maltose unconverted; these amounts are called the "glucose floor" and "maltose floor" and are different for each yeast.
In addition, each yeast has a different "alcohol ceiling" -- a maximum # of sugar which it can convert into alcohol.
Example: Yeast-17 has a glucose floor of 13, maltose floor of 37, and alcohol ceiling of 992. A brewer is using Y-17 to make a beer, using 50 honey and 50 medium malt. Total sugars in the brew: 600 glucose, 500 maltose. During fermentation, Y-17 will first convert 587 glucose into 587 alcohol (leaving 13 glucose). It will then work on the maltose, converting 405 maltose into 405 alcohol (leaving 95 maltose), where it stops because it has now created 992 alcohol.
Finally, a yeast consumes vitamins as it works. If the vitamin level reaches a certain floor (which, again, varies by yeast), the yeast will stop converting sugar into alcohol, no matter how much sugar it has to work with.
To summarize, each yeast has the following attributes:
A sealed kettle which contains a single yeast may be modelled as follows:
In other words, the yeast will produce alcohol until one of three things happens: It runs out of sugars, it runs out of vitamins, or it produces as much alcohol as its alcohol ceiling. Yeasts will always convert glucose in preference to maltose.
A theory from tale 2 was that alcohol is generated in cycles. For each cycle, instead of figuring
This would indicate that if the alcohol was limited by the amount of vitamins present (instead of hitting Max Alcohol, or the sugar floors), the amounts of alcohol to be generated would be in increments instead of being continuous. That is, you might get 350 alcohol or 400 alcohol, but not 375. (This example not based on any real yeast.)
Fermentation could still stop when it hits the sugar floors, so alcohol values between the calculated cycle values are still possible.
You can collect your finished brew anytime after the end of the fermentation phase. You must be carrying a small barrel to do this. When you keg your brew, you will receive data on its attributes -- you will never know for sure how your brew turned out until you try to keg it. If your brew is undrinkable for some reason, it will automatically be thrown out. If your beer was successful, it will be stored in the barrel and you will have the option to name your beer.
When you keg a beer, you will be shown the levels of the various attributes as well as the final flavor. The attributes are:
A beer may have the following qualities:
Property name | Condition to be met |
Very Potent | Alcohol >= 1200 |
Potent | Alcohol >= 800 |
(no name) | Alcohol < 800 |
Dry | (Glucose * 2) + Maltose < 150 |
Sweet | (Glucose * 2) + Maltose > 300 |
(no name) | 150 < (Glucose * 2) + Maltose < 300 |
Black | Color > 500 |
Brown | Color > 200 |
(no name) | Color < 200 |
Fruity | Orange + Banana + Cherry + Date + Honey > 500 |
Spicy | Cinnamon + Nutmeg > 300 |
Bold flavor | Flavor > 1000 |
Noticeable flavor | Flavor > 400 |
Hint of flavor | Flavor > 200 |
(no description) | Flavor < 200 |
Each flavor in the beer (cherry, nutmeg, etc.) may be "bold", "noticeable", or just a "hint". A flavor that is very strong can drown out a weaker flavor; if you have 1000 honey flavor and 200 barley flavor, the barley will not appear. A flavor is drowned out if it is less than a certain percentage of the most powerful flavor in the beer; the exact percentage is unknown.
If three or more flavors can be detected in a beer, it will have "muddled flavor", and none of the flavors will apply. Muddled flavours may also occur for flavour levels that are "too close", even if some or all of them are undetectable individually. A third flavor being 55% of the level of the 2nd highest flavor was enough to make muddled.
My flavor theory is that flavors less than half of the strongest flavor are drowned out, and a beer is muddled if the third flavor is more than half of the strongest. This fits with all of my beer results, but I have not done specific experiments yet. --Amtep
The exact effect of Lactic is still uncertain, but I have had several beers that should have been Cloying, but were drinkable, and had some lactic acid. Simply adding lactic to tannin in that formula fits all my results. -- Amtep
Beers can have as many microbes in them as you care to let get in. Mold, Acetobacterium, and Lactobacillus may be hard to work around, because they add factors both harmful and little-studied.
Generally, you see the largest effects on the resulting beer from the first few yeasts in the kettle. While computing each yeast independently may get you a rough approximation of the flavors and alcohol resulting, the results are not really cumulative or averaged.
Vigorous yeasts (with high alco max or low floor values) can have a big effect even if they enter late. One example from the last Telling was of a particular yeast added at the very end of the list of microbes. Its presence or absence made a 300 alcohol difference in the maximum alcohol generated.
Another example:
I tested two spots:
1) Y3 Y59 A6 M63 Y24 M87 L61 Y65 A62 Y49 L44 M47 Y67 L52 Y64 Y90 Y2 M71 M55 Y82
2) Y3 Y59 A6 L61 L52 M63 Y24 M71 L44 M47 Y65 Y67 Y90 Y49 M31 L85 Y64 M87 L69 Y91 A22 A62 Y2
1 gave 1421 alc and 20 cinnamon, 2 gave 1250 alc and 379 cinnamon. In 1 nearly all of the effect was done by Y3 but in 2 Y59 was able to act more, perhaps something to do with entry times? -- Beren
More research in this field needs to be done.
Beer, Yeast Table, Microbe map